

P.R. Menge, K. Yang, and V. Ouspenski Saint-Gobain Crystals Hiram, OH, USA

CRYSTALS

May 25, 2017 PACRIM 12 Waikoloa, Hawaii, USA

Key Properties of NalL
Applications of NalL
Development of large crystal detectors

Main purpose: Present first results on very large dual detection NaIL scintillators

THALLIUM ACTIVATED SODIUM IODIDE (NaI:TI) A BRIEF INTRODUCTION

Invented by Dr. Robert Hofstadter in 1948

PHYSICAL REVIEW VOLUME 75, NUMBER 5 MARCH 1, 1949 The Detection of Gamma-Rays with Thallium-Activated Sodium Iodide Crystals* ROBERT HOFSTADTER Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received September 27, 1948)

Commercial production first started by Harshaw Chemical in the 1950's

Still world's most widely used scintillator (by volume)

Industrial scintillator with mature detector and system designs

CRYSTALS

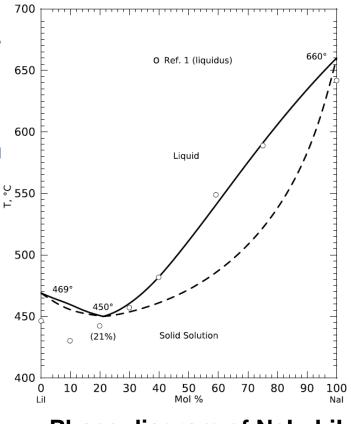
SAINT-GOBAIN

INCORPORATING Li INTO Nal:TI

Neutron detectors are important components in for illicit nuclear material interdiction

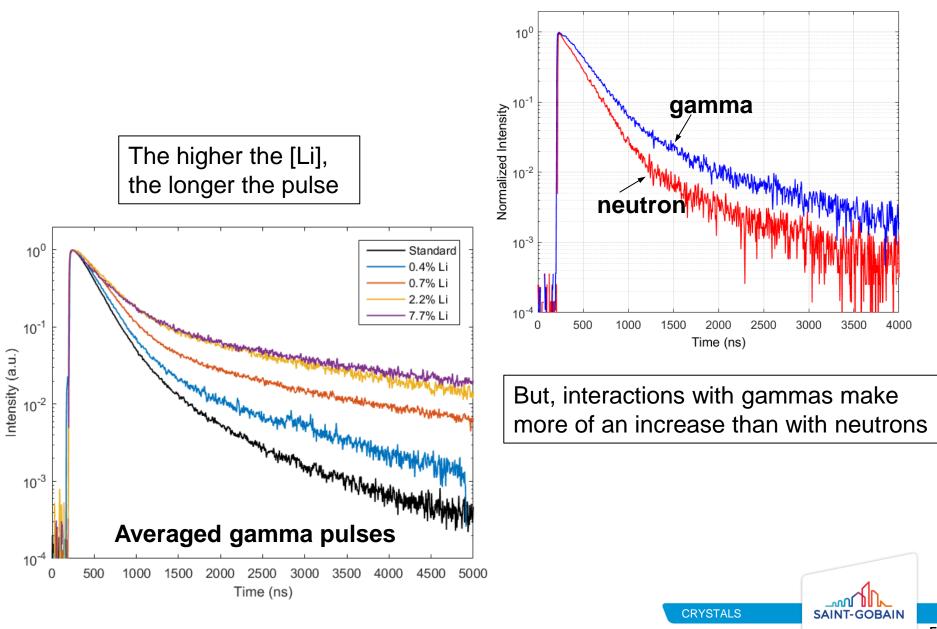
- only fissile isotopes emit neutrons
- efficient, inexpensive neutron detectors are wanted
- simultaneous detection of gamma rays and neutrol desired

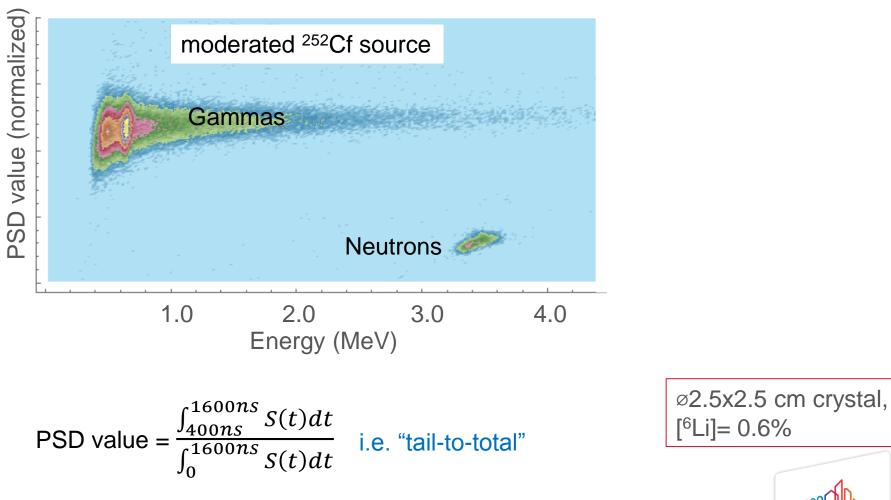
Li can be incorporated into Nal:TI to introduce thermal neutron detection


- n + ⁶Li \rightarrow t (2.75 MeV) + α (2.05 MeV)
- 4.8 MeV events create a lot of scintillation light

□ Nal and Lil forms solid solution at any ratio.

- Tunable neutron detection efficiency
- Crystal growth is tolerant of high Li gradients

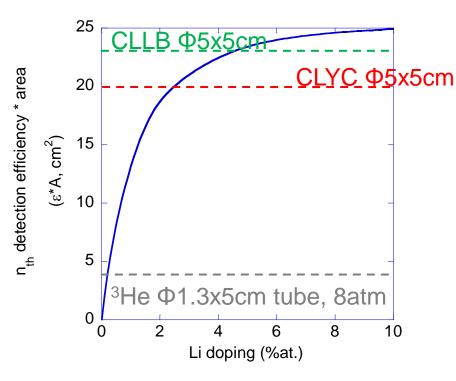

- Need to be able to not mistake gamma-rays for neutrons (no false positives)
- Previous work in this area had been unable to tell the difference (pulse shape discrimination not workable)


Phase diagram of Nal - Lil

ADDING LITHIUM AFFECTS THE SCINTILLATION PULSE SHAPE

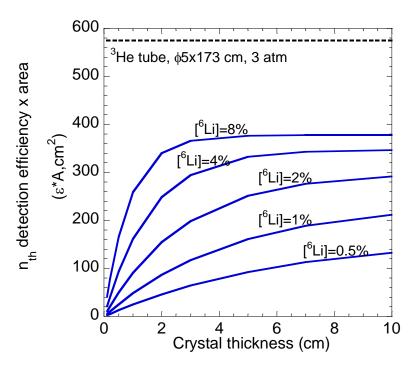
PULSE SHAPE DIFFERENCE GIVES EXCELLENT **GAMMA/NEUTRON DISCRIMINATION**

SAINT-GOBAIN


CRYSTALS

APPLICATIONS FOR NAIL

	Target Application		Competing Technology	Advantage of NaIL
<image/>	Radiation Portal Monitor		³ He tubes ¹⁰ B tubes ⁶ LiF/ZnS films Plastic scintillator	Cost, Spectroscopic gamma, Dual mode
	Mobile	Neutrons: Gammas:	as above Nal:Tl	Cost, Size, Weight, Dual mode
	Backpack	Neutrons: Gammas: Dual:		Cost, Size, Weight
	Handheld	Neutrons: Gammas: Dual:	³ He Cs ₂ ⁶ LiYCl ₆ ⁶ LiF/ZnS films Nal, Csl, LaBr ₃ Cs ₂ ⁶ LiLaBr ₆	Cost, Size, Weight


A FEW % ⁶LI DOPING IS SUFFICIENT FOR MOST SECURITY APPLICATIONS

Handheld size Φ5x5cm

Na & I have small σ_n abs, $\therefore n_{th}$ detection efficiency grows strongly with [⁶Li]

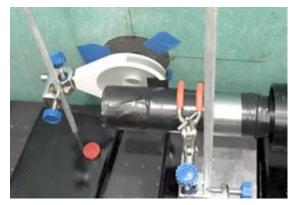
Portal monitor size thicknessx10x40cm

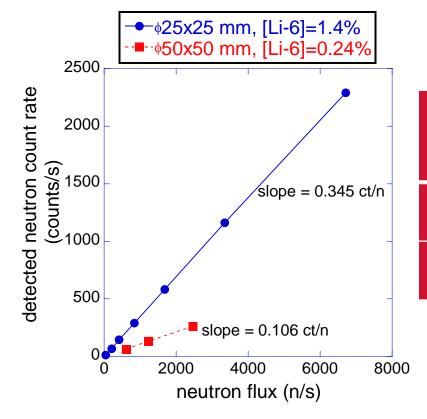
& n_{th} detection efficiency grows with thickness

Fact 1: It is easy and inexpensive to grow large Nal crystals.

Fact 2: Na and I barely compete with ⁶Li for neutron attenuation (0.53 and 6.25 vs. 940 barn).

Advantage 1: The use of low ⁶Li concentrations and large thicknesses can achieve the same neutron detection capabilities as ³He or CLYC or CLLB detectors at a lower cost.


Advantage 2: Large volumes add efficient gamma ray detection capability as well.



NEUTRON EFFICIENCY IS AS EXPECTED

OSU reactor and neutron beam facility

Size	[⁶ Li] in crystal	thermal neutron ε	MCNPX ε prediction
ø2.5x2.5 cm	1.37%	34.5±0.2%	32.8%
ø5.1x5.1 cm	0.24%	10.6±0.3%	11.1%

ACHIEVING LARGE NAIL INGOTS

<u>2015</u> Φ6.4 cm 250 cm³

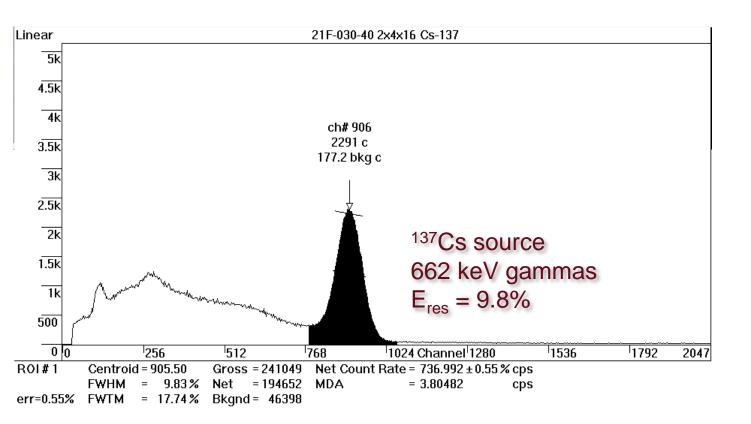
<u>2016</u> Φ20cm NaIL 5800 cm³

<u>2017</u> Φ80cm NalL 120000 cm³

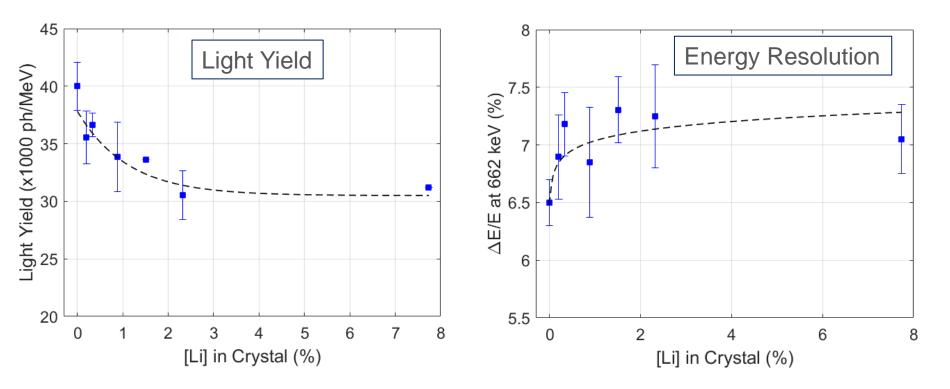
A 5X10X40 CM³ WAS CHOSEN AS A LARGE CRYSTAL FOR TESTING

This is a popular large format

214×16 215-030-90

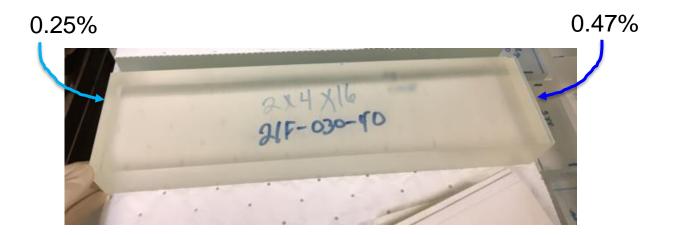

a cut 5x10x40 cm³ NaIL crystal [⁶Li] = 0.37% (measured by ICP-OES)

in a hermetic housing


GAMMA TEST RESULTS: 5X10X40 CM³ DETECTOR

Typical Nal(Tl) of this size is 7.0 - 8.0%

LIGHT YIELD AND ENERGY RESOLUTION DEPEND ON [LI]

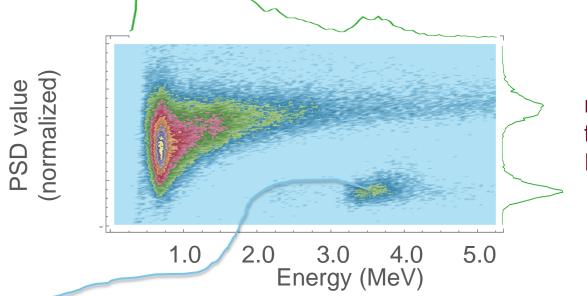


□ Scintillation light yield decreases with [Li].

- ~ 34,000 ph/MeV @ 1% Li
- ~ 31,000 ph/MeV @ 2% Li and above
- dependence is strongest at low [Li]
- Energy resolution is slightly increased.

SAINT-GOBAIN

[Li] is not uniform - causing non-uniformity in light output



The difference in light yield is 4.5% from one end to the other. This is the main source of degradation in energy resolution.

Future growths will utilize gradient reduction techniques & higher lithium concentrations. Goal is <8% at 662 keV.

NEUTRON DETECTION CAPABILITY IS COMPLETELY ACCEPTABLE

moderated 252 Cf source fission neutrons + gammas PSD FoM = 2.0

net detection rate = 0.40 n/s/ng of ²⁵²Cf at 2 m

³He tube in Radiation Portal Monitors Φ 5x173 cm, 3 atm = ~3 n/s/ng of ²⁵²Cf at 2 m

∴ Three of these NaIL detectors with [⁶Li]=1-2% will have same n detection capability as one ³He tube at similar cost

SUMMARY AND OUTLOOK

□ NalL is the future for dual mode detection

Spectroscopic, large volume & low cost

□ First production scale Nal(TI,⁶Li) ingot grown (120 liter)

□ First large detector (2 liter) fabricated

- neutron detection capability is excellent
- below par gamma energy resolution
 - fix with lower ∇[Li]
 - fix with overall higher [Li]

Upcoming work

- Finalize optimized growth process by 2018Q1
- >70 crystals ∃ of various sizes to package for demos and sales
- Start offering NaIL at all sizes in 2018Q2

