Optimizing the Performance of a LaBr₃:Ce, Sr Based Neutron and Gamma Dual Detector

Kan Yang*, Peter R. Menge Saint-Gobain Crystals, HIRAM, OH, USA

*kan.yang@saint-gobain.com

Introduction

L aBr₃:Ce scintillators, when co-doped with a small amount of strontium and other aliovalent elements, are shown to have significantly improved light output and energy resolution [1, 2]. Our previous study shows strontium and calcium co-doping also enhances the crystal's ability to discriminate between heavy charged particles and gamma radiations via pulse shape discrimination (PSD). Complete suppression of internal alpha radiation background can be achieved in Ca or Sr co-doped LaBr₃:Ce [3]. Moreover, the enhanced alpha-gamma PSD makes it possible to use the co-doped LaBr₃:Ce crystal for dual neutron-gamma detection when coupled with a neutron convertor such as ⁶LiF, which is also an excellent reflector.

Fig. 1 Averaged PMT pulses of (a) Ce only and (b) Sr co-doped LaBr₃:Ce when excited by α particles or γ -rays

Sr co-doped LaBr₃:Ce shows more prominent pulse shape differences between gamma and alpha pulses than standard Ce only LaBr₃.

 $n + {}^{6}Li \rightarrow t (2.75 \text{ MeV}) + \alpha (2.05 \text{ MeV})$ Fig.3 Photo of the assembled detector (w/o PMT) Fig. 4 Averaged neutron energy deposition per

✤ 93.5% enriched ⁶LiF powder is used as thermal neutron converter.

* Tritons (2.75 MeV) from ⁶Li(n,t)α reaction are used as the signal for neutron detection.

CNPX simulations suggest the optimal ⁶LiF layer thickness is 60 μm.

Detectors with different ⁶LiF thickness (30 μm, 60 μm, 100 μm, and 200 μm) were tested.

Thermal Neutron Detection

Experimental Setup A ²⁵²Cf source (12.8 ng) was placed 5" from the detector. The source was shielded with 2.25" thick Pb and 2" thick high density polyethylene (HDPE) to attenuate the gammas and moderate the neutrons, respectively. Thermal neutron flux through the detector was determined by MCNPX.

Fig. 5 Gamma-neutron PSD scatter intensity plot of LaBr₃:Ce, Sr with (a) 30 µm (b) 60 µm (c) 100 µm (d) 200 µm thick ⁶LiF conversion layer

⁶ LiF Thickness	Thermal Neutron Detection (E _n < 0.2 eV)			PSD FoM	Gamma
	Capture Rate	Detection Efficiency	Det. Eff. per unit area		Rejection Ratio*
30 µm	8.1%	2.9%	0.60% /layer*inch ²	1.19	5.2 * 10 ⁻⁵
60 µm	15.2%	3.1%	0.63% /layer*inch ²	1.17	7.8 * 10 ⁻⁵
100 µm	23.3%	2.8%	0.56% /layer*inch ²	1.23	2.2 * 10 ⁻⁶
200 µm	39.8%	2.7%	0.55% /layer*inch ²	1.23	1.9 * 10 ⁻⁶

incident neutron (simulated)

Fig. 7 Pulse shape spectra of 60 µm ⁶LiF coated detector at

* Assuming 95% of neutrons are counted

* As expected, thermal neutron detection efficiency is highest when the thickness of ⁶LiF is 60 μm. ✤ A fraction of captured neutrons generate detectable signals depending on the thickness of ⁶LiF. Further increasing the thickness of ⁶LiF will not increase neutron detection efficiency.

Gam 1.2 1.6 1.8 1.4 Lower Energy Threshold (MeV)

Fig. 8 a) Thermal neutron detection efficiencies ($E_n < 0.2 \text{ eV}$), b) PSD Figure of Merit, and c) gamma rejection ratio at different lower energy thresholds

Summary and Outlook

* A dual gamma-neutron detector can be created by surrounding a Sr co-doped LaBr₃:Ce crystal with ⁶LiF powder. * A fast PMT is not required to realize good PSD in Sr co-doped LaBr₃:Ce. Main pulse shape differences are in the slow decay component. Multiple ⁶LiF layers or large surface-area-to-volume ratio are desired for efficient neutron detection. * Replacing the usual reflector with ⁶LiF powder can add neutron detection capability to LaBr₃:Ce,Sr detectors.

REFERENCES

[1] K. Yang, P.R. Menge, J. Buzniak, V. Ouspenski, 2012 IEEE-NSS-MIC Conference record, N1-135, pp. 308-311 (2012).

[2] M. S. Alekhin, J. T. M. de Haas, I. V. Khodyuk, K. W. Krämer, P. R. Menge, V. Ouspenski and P. Dorenbos, Appl. Phys. Lett. 102, 161915 (2013). [43] K. Yang, P.R.Menge, V. Ouspenski, 2014 IEEE-NSS-MIC Conference record, N39-2 (2014)

> **2015 IEEE Nuclear Science Symposium & Medical Imaging Conference 31 October – 7 November, San Diego, California**

