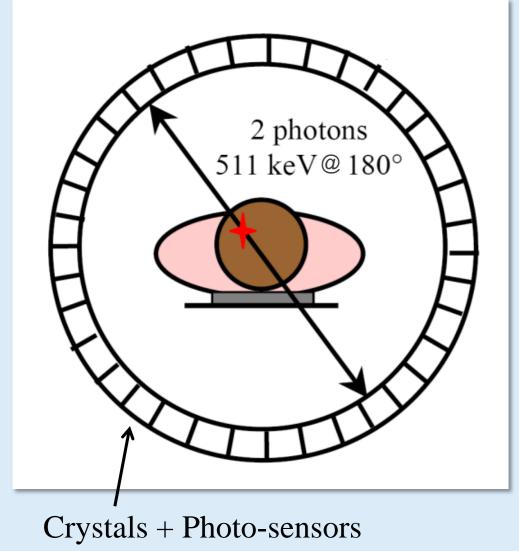


Performance Engineering of LYSO Single Crystals

S. Blahuta¹, K. Yang^{2*}, V. Ouspenski¹, P. Menge²

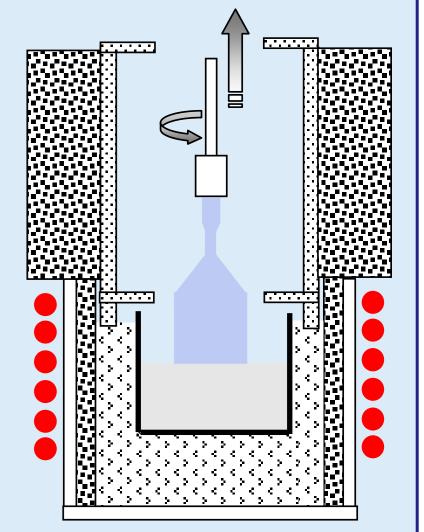

* kan.yang@saint-gobain.com

1.Saint-Gobain Recherche, AUBERVILLIERS, FRANCE 2.Saint-Gobain Crystals, HIRAM, OH, USA

Context

PET scanner ring

LYSO:Ce for Positron Emission Tomography (PET)


Density	1/μ (511 keV)	$\lambda_{emission} \ (nm)$	Light Yield (ph/MeV)	Energy Resolution	Decay time
7.1	10.5 mm	480	8200	15%	300 ns
8.3	10.6 mm	365	11000	9%	60 + 600 ns
7.4	11.5 mm	420	30000	9%	40 ns + afterglow
7.1	12.2 mm	420	32000	8%	40 ns + afterglow
	7.1 8.3 7.4	Definitive (511 keV) 7.1 10.5 mm 8.3 10.6 mm 7.4 11.5 mm	Density (511 keV) (nm) 7.1 10.5 mm 480 8.3 10.6 mm 365 7.4 11.5 mm 420	Density (511 keV) (nm) (ph/MeV) 7.1 10.5 mm 480 8200 8.3 10.6 mm 365 11000 7.4 11.5 mm 420 30000	Density (511 keV) (nm) (ph/MeV) Resolution 7.1 10.5 mm 480 8200 15% 8.3 10.6 mm 365 11000 9% 7.4 11.5 mm 420 30000 9%

LYSO:Ce combines interesting features:

- High density
- Suitable $\lambda_{\text{emission}}$ for PMTs,
- Good scintillation performance

Grown by Czochralski technique

....

Possible improvements:

- Faster Decay Time
- Lower Afterglow

Czochralski growth

LYSO Performance Enhancement by Co-doping

Crystal	Pulse Height (¹³⁷ C	XRL	
Composition	Light Yield (photons / MeV)	Energy Resolution	Rel. intensity
LYSO:Ce	28,000	8.9%	1
LYSO:Ce,Mg	33,000	8.4%	1.12
LYSO:Ce,Ca	34,000	8.5%	1.19

Performance improvement:

- Higher Light Output
- Reduced Afterglow

Ce⁴⁺ stabilization:

- Proved with XANES^[1]
- Ce⁴⁺ has to be considered (WO 2012/066425)

Proposed explanation[1]:

mechanism with Ce⁴⁺

Less efficient trapping due to
 Oxygen vacancies stabilization

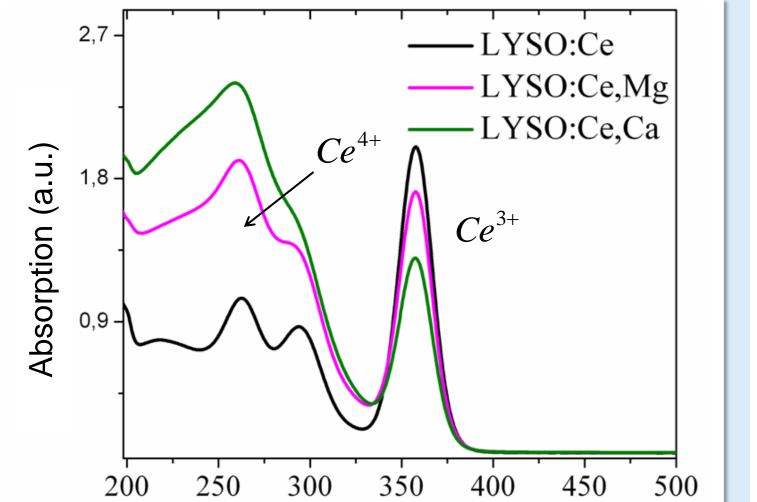
Decay time

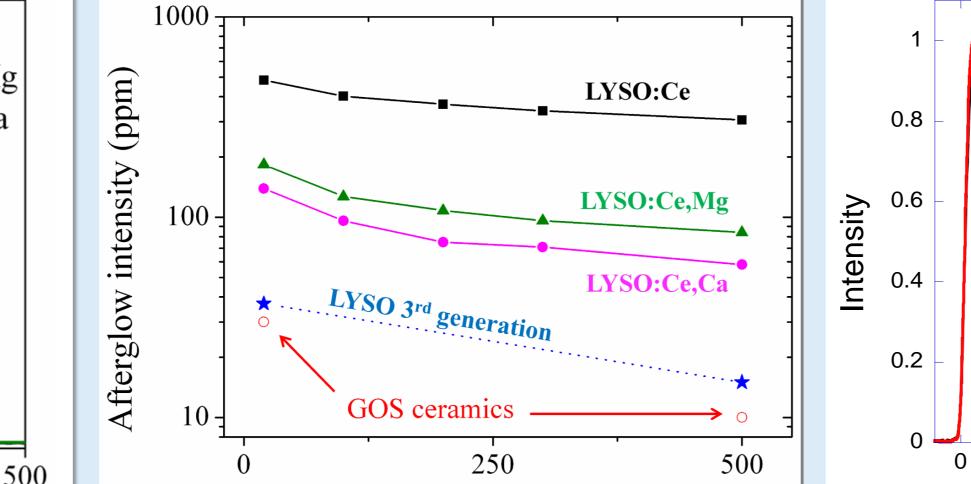
Standard LYSO

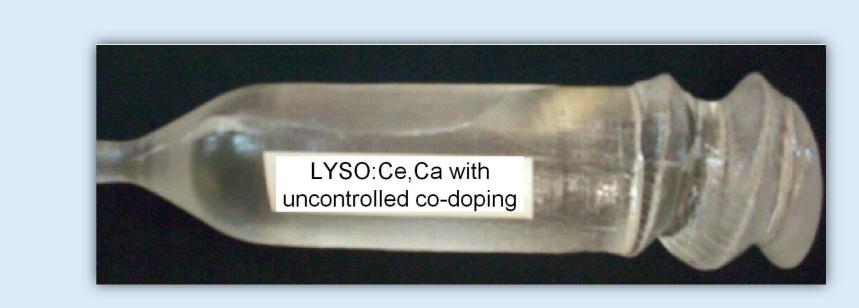
Engineered LYSO

120

34 - 37 ns


80


Uncontrolled co-doping content:


- Unstable crystal growth leading to spiral shape
- Cracks more likely to occur
- Low production yield

Possible explanation:

- Reduced surface tension due to high impurities/ doping [2]

Standard co-doping is not suitable for industrial production.

Low co-doping content leads to poor performance;

λ (nm)	Time (ms)		Time (ns)		 High co-doping content leads to pool performance, High co-doping content leads to unstable crystal growth. 			
Stabilization of Ce ⁴⁺ centers	Significantly suppressed at	afterglow Reduced decay time						
Engineered LYSO for Larg	ge Scale Industria	al Production	on					
Synthesis Optimization		Large Diameter Controlled Growth			Consistently Improved Timing Resolution			
 Progressive optimization of the composition of the composition of the composition of the concentrations of both activator-does of the concentrations of both activator-does of the concentration of both activator-does of the composition in the melted bath Decomposition in the melted bath Source of oxygen Reduce the amount oxygen-related defend introducing undesired contamination 	orecise control opant and co-dopants luring the growth:				400 (Sd) 120 300			
 Consequences on the growth: Increased surface tension Stabilized encetal growth even at large div 		Composition	Standard LYSO	Engineered LYSO	250			
 Stabilized crystal growth even at large diamete Eliminate cracking Better quality crystals 		Light Yield hotons/MeV)	28,000	38 – 42,000		Standard LYSO Production	Engineered LYSO Production	

Timing Resolution of Engineered LYSO*

Energy Resolution8.9%7 - 8%AfterglowHigh~ GOS ceramics

43 - 45 ns

*Measured with 4x4x20mm LYSO pixels, ends-on coupling Two Photonis XP20Y0 PMT's @ -900V, 100 µCi ²²Na source

Conclusions & Perspectives

Improvements and limitations with standard co-doping:

- Improved Light Yield, Decay Time and Afterglow
- Stabilization of Ce⁴⁺ for charge compensation
- Uncontrolled co-doping leads to unstable crystal growth
- Cannot be directly applied to industrial production

Engineering of LYSO for industrial production

- Control of doping concentrations
- Oxidizing agent technique

Decay time

No pollution to impact scintillation

*** NEW possibilities for scintillator preparation**

Engineered LYSO is available in full production sizes

Light Yield better than 40000 Ph/ MeV (γ 662 keV);

Decay Time down to 34 ns;

• Afterglow similar to the commercial GOS ceramics

A NEW option for the market (PET or CT systems)

References

[1] S. Blahuta, A. Bessière, B. Viana, P. Dorenbos and V. Ouspenski, IEEE Transactions On Nuclear Science 60, 3134-3141 (2013).
 [2] M. Spurrier, P. Szupryczynski, H. Rothfuss, K. Yang, A. A. Carey and C. L. Melcher, J. Crystal Growth 310, 2110-2114 (2008).

Acknowledgments

S. Leforestier, Saint-Gobain Crystals, Gières, France

Patent pending (US 2016/0252631)

2016 IEEE Nuclear Science Symposium & Medical Imaging Conference Oct. 29 – Nov. 5, 2016, Strasbourg, France