3rd International Conference on Imaging Technologies in Biomedical Sciences: ITBS2005 Innovation in Nuclear and Radiological Imaging: From Basic Research to Clinical Application Milos Conference Center, Milos Island, Greece, 25-28 September 2005

special session:

Advances in functional breast imaging by compact and dedicated imagers"

Recent advances and future perspectives of gamma imagers for scintimammography

Roberto Pani

INFN – Dept of Experimental Medicine and Pathology University "La Sapienza" Rome Italy

Latest generation gamma cameras for Scintimammography

LaBr3:Ce gamma camera Continuous crystal 1st prototype 5x 5 cm² (2005)

INFN Scintirad Project Multi-PSPMT NaI(TI) pixellated 1° generation gamma camera 18 x 16 cm² (2001)

INFN-IMI project Pol.Hi.Tech -CAEN Pixellated CdZnTe 2nd generation
Gamma Camera 12.5 x12.5 cm²

(2005)

Gamma Medica Ideas Inc., Northridge, California, USA

Some of the most recent Gamma Cameras characteristics

	LaBr ₃ :Ce	Multi- PSPMT	LumaGEM ®	LumaGEM 3200 ®	LumaGem3200S®	
	2005	2003	Released 1999	Released 2003	Released 2005	
Detector	LaBr₃:Ce- H8500 PMT	Nal(TI) array R8520 PSPMT	Nal(TI) array - PSPMT	CdZnTe Solid State	CdZnTe Solid State	
Field of ®iew	5cm x 5cm	18cm x 16cm	13cmx 13cm	20cmx 16cm	20cmx 16cm	
Dead space	< 8 mm from edge	< 8 mm from edge	<10 mm from edge	< 8 mm from edge	< 8 mm from edge	
Thickness	< 8 cm	< 9 cm	< 9 cm	< 7.5 cm	< 7.5 cm	
Energy Resolution	6% FWHM	12% FWHM	10% FWHM	6% FWHM	4,5% FWHM	
Spatial resolution	1 mm	2 mm	2.2mm	2.5 mm	1.6 mm	
Space Bandwidth	continuous	6930pixel ²	3,136 pixel ²	5,120 pixel ²	12,288 pixel ²	

LumaGEM ® data from Bradley E. Pratt © Gamma Medica Instruments

Solid- State Compact CdZnTe Gamma

Gamma Medica Ideas Inc., Northridge, California, USA

12.5 x 12.5 cm² FOV Pitch: 1.6 mm Matrix: 80 x 80 high density ASIC readout has been built

<u>CLAIMS</u>

The energy resolution, sensitivity and spectral shape of the solid state digital gamma camera are each superior to the NaI(TI)

The improved energy resolution allows for a smaller energy window to be used.

Use of narrower energy window could improve scatter rejection while maximizing sensitivity and ultimately lead to improved contrast and resolution in both planar imaging and SPECT

T. Vandehei, K. Parnham, J. Li, Y. Yamaguchi, K. Iwata, , J. B.E. Patt, J. Zhang, H. Zhou, M. Szawlowski, G. Caravaglia, E. Bolle, B. Sundal, S. Mikkelsen, T. Orskaug Medica Ideas Inc., Northridge, California, USA Gamma SNMA 2005 presentation *IMI Project: INFN* Multi-PSPMT NaI(TI) pixellated 1° generation scintillation gamma camera 18 x 15 cm2 (2001) *PSPMT array closely packed coupled to a NaI (TI) scintillation matrix*

NEW TRENDS IN CRYSTAL GROWING

INFN Scintirad Project :

Lanthanum Bromide Gamma Camera Prototype (LaBr₃:Ce)

The photodetector: Position sensitive Hamamatsu Flat Panel PMT H8500/9500 → Extreme compactness (15 mm thick)

Suitable for close packing in matrices(1 mm boundary dead zone) in order to obtain

Very large detection areas

The scintillator : LaBr₃:Ce 50x50x5 mm³

Fast, efficient, ultra high energy resolution

Very high light yield (66000 photons/MeV at 350/450 nm)

- Almost a half of Nal(TI) energy resolution
- Attenuation coefficients higher than Nal(TI)

LaBr₃:Ce Integral assembly with Flat panel

Crystals	Density (g/cm³)	Light yield (ph/MeV)	Decay time (ns)	Maximum Emission length (nm)	∆E/E (FWHM) PMT read-out				
	662 keV **	140 keV							
Nal:Tl	3.67	41000	230	410	5.6 %	8.5 %			
Csl: Na	4.51	40000	630	420	7.4 %	9.5 %			
CsI:TI	4.51	66000	800÷6×10 ³	550	6.6 (PMT)/ 4.3 (SDD)	14 %			
LaCl ₃ :Ce	3.79	49000	28	350	3.8 %	8.0* %			
LaBr ₃ :Ce	5.3	66000	26	380	2.8 %	5.8 %			
Bi ₄ Ge ₃ O ₁₂ (BGO)	7.1	9000	300	480	9.0 %				
Lu ₂ SiO ₅ :Ce (LSO)	7.4	26000	40	420	7.9 %	18 %			
Gd ₂ SiO ₅ :Ce (GSO)	6.7	8000	60	440	7.8 %	22 %			
YAI O ₃ :Ce (YAP)	5.5	21000	30	350	4.3 % (APD)	20 %			
** from C.W.E. van Ejjk Phys. Med. Biol. (2002) 85-106									

* Expected values

Lanthanum crystals radiation absorption properties

values @ 140 KeV photon energy

Crystal	ρ (density) (g cm ⁻³)	τ (cm ⁻¹)	μ (cm ⁻¹)	τ/ μ	HVL (cm)	Thick. (80% eff.) (cm)
LaBr ₃ :Ce	5.29	2.2	3.01	0.73	0.23	0.53
LaCl ₃ :Ce	3.79	1.78	2.37	0.75	0.29	0.68
Nal:Tl	3.67	2.07	2.66	0.78	0.26	0.60
CsI:TI	4.51	3.17	3.92	0.81	0.17	0.41

LaBr₃:Ce detection performance

Co57 Spot scanning with 1 mm collimation aperture

Energy Resolution

Sensitivity

LEAP

LEHR

• LEAP parallel hexagonal collimator, 1.5 mm hole 0.2 mm septum and 22 mm length • LEHR parallel hexagonal collimator, 1.3 mm hole 0.2 mm septum and 35 mm length

Role of energy resolution in scattering rejection

Role of energy resolution in scattering rejection

Energy Resolution @140 KeV	10%			20%			30%		
	Scattered/Transmitted ratio								
	8:1	5:1	2:1	8:1	5:1	2:1	8:1	5:1	2:1
Energy Windows	Percentage of false events (Scattering)/true events								
50%	13	8	3	36	23	9	66	42	17
84%	26	16	6	66	40	16	125	77	30
98%	45	29	12	110	71	29	-	-	-

Continuous Crystals vs pixellated Crystals

^{99m} Tc	FLAT FI	ELD
G	EOMETR	Y
SOURCE Tc 99m	<	\leq

24	91	04			21
Gamma Camera & Crystals	H8500 PSPMT LaBr ₃ : Ce continuous (5 mm thick)	R2486 PSPMT YAP(Ce) array 0.6 mm pixel	R2486 PSPMT CsI(TI) array 1.2 mm pitch	42 PSPMT HAMAMATSU R8520-C12 Nal(TI) 1,8 mm pixel	<u>ANGER</u> <u>Camera</u> Nal(Tl) continuous (6 mm thick)
Intrinsic Spatial Resolution*	0.9 mm	1.1 mm	1.3 mm	2.0 mm	3.5 mm
Energy Resolution*	6.0%	50%	23%	15%	10%
Efficiency*	80%	45%	40%	70%	80%

* @ 140 KeV

10 20 30 40

Conclusions :

LaBr and CZT gamma cameras show superior spatial and energy resolution than previous generation based on NaI(TI) scintillation array

LaBr continuous crystal shows better imaging performance than pixelated detectors

Both CZT and LaBr gamma cameras show similar efficiencies for the same energy window

CZT has the best energy resolution @ 140 keV

Energy resolution better than 10% could help scintimammography by improving scatter rejection while maximizing sensitivity.

Large area LaBr continuous crystals are not available yet (10 x10 cm² in June 2006)