Organic Scintillation Materials and Assemblies

About Luxium Solutions

Luxium Solutions is a combination of companies that have been prominent in crystal growth or radiation detection and measurement, as well as opto-mech products. It is comprised of Scintillation & Photonics Products businesses. Notable names in businesses include: Bicron, Crismatec, Harshaw, and NE Technology (inorganic and organic scintillators and detectors); Gamma Laboratories and TGM Detectors (gas-filled radiation detectors); Saphikon (Sapphire products).

Luxium Solutions is considered to be the leader in scintillation technology works with OEM customers and researchers to develop detectors for the Energy, Medical, Security, Industrial, Defense & Semiconductor markets to meet new specifications for innovative applications.

This brochure presents the properties and features of our premium plastic scintillators, plastic scintillating fibers and related materials. All of our premium plastic scintillators are made of a base of polyvinyl toluene or styrene plus various fluors, which are selected to give each scintillator its characteristic response. Highly purified monomers are the bases for all of our materials, which assures maximum homogeneity and highest quality.

Individual product data sheets are available for each material type. Custom detectors using our plastic or combinations of our plastic and inorganic scintillators are available. We welcome your inquiry for special shapes or custom designs.

Contents —

Plastic Scintillators: Pages 3 - 4 Special Scintillators for Neutrons: Page 5 Optical Plastic Components: Page 6 Fibers: Pages 7 - 8 Detector Assembly Materials: Page 9 Technical Data: Pages 10 - 13 General Characteristics Light Output and Stopping Power Light Collection Light Attenuation Coefficients

Physical Constants - Pages 14 Plastic Scintillators Handling and Care

Plastic Scintillators

General Description -

The scintillation emission of a typical plastic scintillator has a maximum around 425 nm. Plastic scintillators are characterized by a relatively large light output — typically 25-30% of Nal(Tl) — and a short decay time of around 2 ns. This makes the material suited for fast timing measurements.

All plastic scintillators are sensitive to X-rays, gamma rays, fast neutrons and charged particles.

Special formulations are available for thermal neutron detection or with improved X-ray efficiency. Plastic scintillators are the most popular scintillation material for use in calorimeters, time of flight detectors, nuclear gauging and large area contamination monitors.

The exact emission wavelength and decay time depend on the type of organic activator and on the host material. A large number of different plastic scintillators are available, each for a specific application. General characteristics of plastic scintillators are presented in another section of this brochure.

Availability -

A plastic scintillator consists of a solid solution of organic scintillating molecules in a polymerized solvent. The ease with which they can be shaped and fabricated makes plastic scintillators an extremely useful form of organic scintillator. Our plastic scintillators are produced in a wide variety of shapes and sizes. Cast sheets are the most commonly used forms.

You also can obtain precision thin sheets, thin film, rods, annuli, ingots and large rectangular blocks.

We supply most solid scintillators with their surfaces prepared to optimize light collection. For cast sheets, the cast surfaces are untouched, and the edges are machined and polished or diamond milled.

Rods, annuli and blocks are machined and polished, or coated with a diffuse reflector paint such as BC-620. Such a reflector is used only when there are few reflections of the scintillation light off the scintillator surfaces before the light reaches the PMT. Most applications require finished surfaces.

You can also obtain scintillators as finished detector assemblies. These incorporate light guides, photomultiplier tubes, special radiation entrance windows, and light tight wrappings (or metal housings).

Plastic Scintillator Applications Guide					
Scintillator	Distinguishing Feature	Principal Applications			
BC-400	NE-102 equivalent	general purpose			
BC-404	1.8 ns time constant	fast counting			
BC-408	best general purpose	TOF counters; large area			
BC-412	longest attenuation length	general purpose; large area; long strips			
BC-416	lowest cost	"economy" scintillator; large volume			
BC-418	1.4 ns time constant	ultra-fast timing; small sizes			
BC-420	1.5 ns time constant, low self-absorption	ultra-fast timing; for sheet areas > 100mm ²			
BC-422	1.4 ns time constant	very fast timing; small sizes			
BC-422Q	quenched; 0.7 ns time constant	ultra-fast timing, ultra-fast counting			
BC-428	green emitter	for photodiodes and CCDs; phoswich detectors			
BC-430	red emitter	for silicon photodiodes and red-enhanced PMTs			
BC-440	high temperature up to 100°C	general purpose			
BC-440M	high temperature up to 150°C	general purpose			
BC-444	slow plastic, 285 ns time constant	phoswich detectors for dE/dx studies			
BC-444G	285 ns time constant; green emitter	phoswich detectors for dE/dx studies			
BC-452	lead loaded (1 or 2%)	x-ray dosimetry (<100 keV); Mossbauer spectroscopy			
BC-490	casting resin scintillator	general purpose			
BC-498	applied like paint	beta, gamma detection			
Wavelength S	Shifter Bars				
BC-480	UV to blue waveshifter	Cerenkov detector			
BC-482A	green emitter	waveshifter			

Plastic Scintillators

Plastic sheets cast from the monomer ensure the highest light yield and best internal light transmission. All raw materials undergo extensive purification prior to polymerization and the finished sheets exhibit highly uniform scintillation and optical properties. Scintillators are machined to final dimensions using diamond tooling to provide optimum quality surfaces for total internal reflection.

Standard Cast Sheet Sizes

Thickness*	Thickness Tolerance (nominal)	Routine Maximum**					
0.5 mm	± 0.1 mm	30 x 60 cm					
1 mm	± 0.1 mm	30 x 60 cm					
1.5 mm	± 0.25 mm	30 x 101 cm					
2 mm	± 0.25 /- 0.3 mm	45 x 101 cm					
3 mm	0.38 mm	63 x 101 cm					
5 mm	+ 0.56 / - 0.46 mm	63 x 203 cm					
6.4 mm	+ 0.64 / - 0.51 mm	63 x 203 cm					
10 mm	± 0.51 mm	63 x 203 cm					
12.7 mm	± 0.64 mm	63 x 203 cm					
20 mm	± 0.73 mm	63 x 203 cm					
25 mm	+ 0.76 / - 1 mm	63 x 203 cm					
38 mm	± 0.76 mm	63 x 203 cm					
50 mm	$\pm 2 \text{ mm}$	63 x 203 cm					
75 mm	\pm 2.5 mm	60 x 101 cm					
100 mm	± 3.8 mm	60 x 101 cm					
125 mm	± 6 mm	60 x 101 cm					
150 mm	± 6 mm	60 x 101 cm					
* This dimensi	* This dimension is controlled during the casting process						
** Large sizes	** Large sizes available, but with different tolerances						

BC-490 Plastic Scintillator Casting Resin -

BC-490 is a partially polymerized plastic scintillator that can be cured to full hardness by the end user. The scintillator thus formed is clear, with scintillation and mechanical properties similar to those of our general purpose plastic scintillators. It is most frequently used in applications that require other materials to be imbedded in the scintillator and those that require unique shapes to be cast, often in special holders.

BC-490 is supplied in complete kits with detailed instructions. Each kit contains three parts: partially polymerized scintillator resin, catalyst and catalyst solvent.

A green-emitting version, BC-490G, is also available.

Special Large Cast Sheet

Thickness Range	Maximum Width	Maximum Length
1 - 5 cm	30 cm	450 cm
0.5 - 5 cm	45 cm	400 cm
0.5 - 5 cm	60 cm	300 cm
1 - 2.5 cm	100 cm	200 cm
1 - 3.8 cm	120 cm	120 cm
Please ask a	bout other s	special sizes
you may ne	ed	

Thin Films -

Thin films are ideally suited for charged particle detection.

Thin Film Specifications (Typical Size) BC-400B						
Thickness	Tolerance	Sheet Size				
Range	Range	W x L				
.15 mm	± 10%	150 x 350 mm				
.20 mm	± 10%	150 x 350 mm				
.25 mm	± 10%	150 x 350 mm				
• Edges are trir	nmed or polis	hed (upon request)				

Special Scintillators for Neutrons

Our Zinc Sulfide based plastic scintillators are formulated for the efficient detection of neutrons in the presence of gamma radiation. The chart below compares these specialized detectors to our other neutron detector materials.

BC-702 Thermal Neutron Detector -

BC-702 is a highly-efficient scintillation detector for thermal neutrons, with excellent gamma background discrimination characteristics. The detector material incorporates a lithium compound matrix dispersed in a fine ZnS(Ag) phosphor powder.

The scintillator disc can be mounted directly to a photomultiplier tube or light guide and surrounded by an appropriate moderator.

BC-720 Fast Neutron Detector -

BC-720 scintillator is designed specifically for detecting fast neutrons (above 1 MeV) while being insensitive to gamma radiation. It may be coupled directly to a photomultiplier tube or light guide with a variety of optical greases or epoxies.

BC-704 and BC-705 Thermal Neutron Detector -

The BC-704 detector is a phosphor screen based on ZnS(Ag) and ⁶Li materials having a wavelength of max emission at 450nm.

Absolute scintillation efficiency = approximately 27 eV/photon; each stopped thermal neutron will liberate 1.75 x 10^5 photons; absolute scintillation efficiency = 9%.

Gamma-ray sensitivity: number of gamma photons giving same light output as one neutron = 4,500 for ²²⁶Ra, 1,000 for 137 Cs, 450 for 60 Co.

The composition and properties of BC-705 are the same as those of BC-704, except that the zinc sulfide is activated with copper, i.e., ZnS(Cu). This lengthens the wavelength of maximum emission to 525 nm (green light) which is more suitable for use with some image intensifiers.

Neutron Scintillators Table of Comparison						
Scintillator	Туре	Decay Time ns	Fast n	Thermal n	Gamma Ray Response	Loading Elements
BC-702	disc	250		х	very small	⁶ Li
BC-704	rectangular	250		х	very small	⁶ Li
BC-720	disc	250	х		very small	Н
GS-20	glass	various	х	х	small	⁶ Li
KG2	glass	various	х	х	small	⁶ Li
BC-400	plastic	2.4	х		yes	Н

Pictured are BC-720 discs

Detector Congu	ration				
Scintillator	Sizes	Thickness	Shape	Available Configuration	1
BC-702	38, 50, 76, 127mm	6.35mm	Disc	Single disc or Fully integrated with PMT	1
BC-720	38, 50, 76, 127mm	15.9mm	Disc	Single disc or Fully integrated with PMT	1
BC-705	≤ 300x300mm	screen	Rectangular	Fully integrated with PMT	1
BC-704	≤ 300x300mm	screen	Rectangular	Fully integrated design*	1
		*for more inforr	mation, view Neutror	Detection System data sheet on our website at	1
			www.luxiumsolut	cions.com/products/neutron-detection-solutions	5

Optical Plastic Components

Light guides are used to convey scintillation photons to the readout device. Key performance parameters are good optical transmission across a broad range of wavelengths and highly polished surfaces to promote total internal reflection. All light guides are custom designed to suit the particular scintillator geometry and experimental constraints.

Light Pipes -

Plastic light pipes often are used with organic scintillators to:

- Provide a PMT mounting surface
- Guide the scintillating light to the photocathode
- Back-off the PMT where the scintillator is in a strong magnetic field
- Minimize pulse height variation

Typical light pipe geometries include:

- Right Cylinders used when the light pipe diameter is the same as the scintillator diameter
- Tapered Cones are transition pieces between squareto-round or round-to-round cross-section
- "Fish Tail" are transition pieces from thin, rectangular cross-sections to round cross-sections
- Adiabatic provide the most uniform light transmission from the scintillator exit end to the PMT; the crosssectional areas of the input and PMT faces are equal

We recommend that, for scintillators <6 mm thick, a fish tail light pipe have a groove machined into its edge which joins the scintillator. The scintillator edge fits into the groove to improve the mechanical strength of the joint. Also, a disk which matches the diameter of the PMT is coupled to the light pipe's other end to act as the PMT mounting surface.

The length of a fish tail or adiabatic light pipe is generally equal to the width of the scintillator, for scintillators 15.2 cm wide or greater.

The light pipe materials we use include:

- BC-800 UVT acrylic for scintillators with emission spectra in the near UV, such as NaI(TI), BC-418, BC-420 and BC-422
- BC-802 general purpose, non-UVT, PMMA plastic for most scintillators

Wavelength Shifter Bars -

Wavelength shifter (WLS) plastic bars absorb light at one wavelength and emit it isotropically at a longer wavelength. A portion of the re-emitted light is transmitted by total internal reflection along the WLS bar to be read out at the ends.

Often used with scintillator shower stacks, single WLS bars are air-coupled to a stack or plane of scintillator strips. The scintillation light is essentially turned 90° in a very compact structure. However, there is a typical 75% loss of signal amplitude in such a system.

We make wavelength shifter bars from PMMA- and PVT-based materials. These include:

- BC-480 shifts from near UV (300-360 nm) to 425 nm
- BC-482A shifts from 420 to 500 nm; for use with BC-408 and BC-412 plastic scintillators
- BC-484 shifts from 380 to 435 nm; for use with BC-414 plastic scintillator

We also supply WLS optical fibers.

Plastic Scintillating and Wavelength-Shifting Fibers

Luxium Solutions manufactures a variety of plastic scintillating, wavelength-shifting and light-transmitting fibers used for research and industry.

Starting in 2023, Luxium Solutions introduced the BCF-XL series of scintillating and wavelength shifting fibers with improved, market-leading attenuation length for optimal, reliable performance for a variety of different applications.

Specific Properties of BCF-XL Series Formulations						
Fiber	Emission Color	Emission Peak, nm	Decay Time, ns	# of Photons per MeV*	Attenuation Length (m)**	Characteristics / Applications
BCF-10XL	blue	432	2.7	~8000	>4	General purpose; optimized for diameters >250μm
BCF-12XL	blue	435	3.2	~8000	>4	Improved transmission for use in long lengths
BCF-9998XL	blue	435	3.2	~8000	>4	Scintillating fiber, optimized for maximum light output in short length canes (<0.5m)
BCF-20XL	green	492	2.7	~8000	>4	Fast green scintillator
BCF-60XL	green	530	7	~7100	>4	3HF formulation for increased hardness
BCF-91AXL	green	494	12	n/a	>4	Shifts blue to green
BCF-92XL	green	492	2.7	n/a	>4	Fast blue to green shifter
BCF-9929AXL	green	492	2.7	n/a	>4	Blue to green shifter. Pairs well when exciting wavelengths are >425nm (e.g. injection- molded and extruded scintillators)
BCF-9995XL	blue	450	2.7	n/a	>4	UV to blue shifter
BCF-98XL	n/a	n/a	n/a	n/a	Not available	Clear Waveguide

*For Minimum Ionizing Particle (MIP), corrected for PMT sensitivity

** For 1mm diameter fiber, measured using silicon photodiode

Our fibers are available in bulk quantities wound on spools (we do not recommend spooling fiber diameters >2mm as they tend to exhibit "strain hysteresis") and as canes (pre-cut straight lengths). They can be assembled into stacked arrays, bundles, ribbons and complete detectors. Current sizes range from 0.5 mm to 3 mm in round cross-sections. Custom sizes and designs available upon request.

Single-Clad Fibers

Our standard fibers consist of a polystyrene-based core and a PMMA cladding. The scintillating core contains a combination of fluorescent dopants selected to produce the desired scintillation, optical and radiation-resistance characteristics. Often, one property is enhanced while another is mildly compromised. In small fibers (< 0.5mm), the fluor concentration may be increased on request, usually at the expense of light attenuation length. These fibers yield about 8,000 photons per MeV deposited.

Optical Cladding

PMMA (polymethylmethacrylate, $C_5H_8O_2$) is the standard cladding material for Luxium Solutions' fibers. It has a density of 1.2 g/cc and a refractive index of 1.49. The refractive indices of the core and cladding and the cross sectional shape of the fiber determine the trapping efficiency. In round fibers, the trapping efficiency also depends on the distance between the fiber axis and the scintillation event. The trapping efficiency of Luxium Solutions' round fibers ranges from 3.4% for events occurring at the fiber axis to approximately 7% for events near the core-cladding interface.

Common properties of Single-Clad Fibers

Core material	Polystyrene
Core refractive index	1.60
Density	1.05
Cladding material	Acrylic
Cladding refractive index	1.49
Cladding thickness, round fibers	3% of fiber diameter
Diameter Tolerance	<2% for fiber length up to 2 meters
Numerical aperture	0.58
Trapping efficiency, round fibers	3.44% minimum
No. of H atoms per cc (core)	4.82 x 1022
No. of C atoms per cc (core)	4.85 x 1022
No. of electrons per cc (core)	3.4 x 1023
Radiation length	42 cm
Operating temperature	-20°C to +50°C
Vacuum compatible	Yes

Scintillating Core n = 1.60 Optical Cladding n = 1.49 Extra Mural Absorber (EMA) Lost Photon Particle Coptical cladding thickness: >5\lambda (\approx 3 microns), typically 3 - 5\% x OD 35.7°

A Typical Round Scintillating Fiber

Detector Assembly Material Optical Interface, Wrapping Materials

BC-631 Silicone Optical Grease -

BC-631 Clear, colorless, silicone, optical coupling compound that features excellent light transmission and low evaporation and bleed at 25 C. It has a specific gravity of 0.976 and 1.465 Index of Refraction. It is not recommended that BC-631 optical grease be used with Teflon reflector except for temporary optical coupling. We supply this single component formulation in 113 g and 453 gram jars.

BC-634A Optical Interface Pad -

BC-634A is a silicone-adhesive coupling compound for making an optically clear bond between the scintillator and photomultiplier tube. BC-634A is formulated for use within the temperature range of -10 to +60°C, has an index of refraction of 1.42 and an internal transmission >98% around 400nm.

BC-634A is a self-wetting, flexible pad just hard enough to resist tearing while handling.

If you cannot maintain sufficient interface pressure, apply a thin film of coupling grease to both sides of the interface pad.

BC-637 High Temperature Optical Interface Pad -

BC-637 is a silicone-adhesive coupling compound for making an optically clear bond between the scintillator and photomultiplier tube. BC-637 is rated to 200 C.

BC-638 Black Wrapping Tape -

BC-638 is a black adhesive tape 2" (50.8mm) wide by .008" (0.2mm) thick. Wrapping a plastic scintillator in one layer will give you a light-tight seal. We provide BC-638 in 36 yard (32.9m) rolls.

BC-640 Plastic Masking Paper -

This material is an adhesive-backed masking paper routinely used for protecting the surfaces of plastic scintillator during handling or storage. We supply BC-640 in rolls 12" (30.5cm) wide by 300' (91.4m) long.

BC-642 PTFE Reflector Tape -

BC-642 is a .003" (0.08 mm) thick (normal) Teflon tape and is frequently used as a reflecting material for non-hygroscopic scintillators. Three layers give you optimum reflectivity. It comes in rolls 2" (50.8mm) wide by 540" (13.7m) long.

Technical Data General Characteristics

Scintillators	General Purpose BC-400, 404, 408, 412, 416, 418, 420, 422, 430,444,	High Temperature BC-440, 440M	
Base	Polyvinyltoluene	Special aromatic plastic	
Density	1.03	≈1.04	
Refractive Index	1.58	1.58	
Coefficient of Linear Expansion7.8 x 10-5/°C, below 67°C			
Atomic Ratio, H/C	≈1.1	≈1.1	
At +60°C = 95% of that at +20 Light Output independent of temperature f -60°C to +20°		At +60°C = 95% of that at +20°C; independent of temperature from -60°C to +20°C. At 150°C, light output is 84% of that at room temperature (BC- 438)	
Vapor Pressure	May be used in vacuum	Structural Properties of BC-408 Prem	nium Pla
Solubility	Soluble in aromatic solvents, chlorine, acetone, etc; insoluble in water, dilute acids, lower alcohols, silicone fluid, grease and alkalis.	(Characteristic of all of our PVT-base Property Test Pro	Scintilla

May be used in vacuum	Structural Properties of BC-408 Premium Plastic Scintillator				
luble in aromatic solvents, ne, acetone, etc; insoluble in	(Characteristic of all of our PVT-base Scintillator Materials) Thickness				
, dilute acids, lower alcohols,	Property	Test Procedure	50 mm	150 mm	
	Yield Strength MPa	ASTM D638	30.8	28.3	
	Breaking Strength MPa	ASTM D638	30.8	28.3	
	Tensile Modulus MPa	ASTM D638	2700	3010	
	Flexural Strength MPa	ASTM D790	45.6	40.5	
	Flexural Modulus MPa	ASTM D790	2920	2700	
	Compressive Strength MPa	ASTM D695	38.1	40.5	
	Compressive Molulus MPa	ASTM D695	1380	2700	
	Shore "D" Hardness	ASTM D2240	84	84	

Technical Data Light Output, Light Collection

Light Collection in BC-412 Cast Sheet

Sheet Size:

120 mm x 2000 mm (4.71"x 80")

- Plot of Technical Attenuation Length using a 150 mm (6") long, triangular light guide connecting the scintillator to the phototube.
- Approximate result when the phototube is coupled directly to the scintillator.

Technical Data Light Attenuation Coefficients

Light Attenuation Lengths for Plastic Scintillators

The Technical Light Attenuation Length (TAL) of a plastic scintillator is defined as the length required to reduce the signal amplitude by 1/e. It is applied to scintillator sheets and rods having lengths of a meter or more, and where total internal reflection is a major factor in the light collection process.

These factors contribute to attenuation length for a given scintillator sheet:

a. Bulk transmission of the material

b. Thickness and shape

c. Reflective properties of the surfaces

The use of light guides and reflectors also can alter the measured attenuation length of a plastic scintillator counter assembly. The effect of thickness on the measured TAL is demonstrated by the following data on 12 cm wide x 200 cm long sheets of BC-408:

5 mm thick TAL = 190 cm 10 mm thick TAL = 210 cm 20 mm thick TAL = 275 cm

This data was taken using a 50 mm diameter, bialkali photomultiplier tube coupled to one end of the scintillator by a light guide and with the opposite end of the scintillator blackened. In actual practice, however, the far end is not blackened. This results in much better light collection performance.

The following are typical bulk attenuation lengths for our premium plastic scintillators used in long sheets:

BC-400	250 cm
BC-404	160 cm
BC-408	380 cm
BC-412	400 cm
BC-416	400 cm
BC-420	110 cm
BC-440	400 cm

Gamma Attenuation Coefficients for Plastic Scintillators							
keV	μ ₁ (cm ⁻¹)	keV	μ ₁ (cm ⁻¹)				
10	1.90	360	0.112				
12	1.23	380	0.110				
14	0.780	400	0.107				
16	0.620	420	0.105				
18	0.490	440	0.103				
20	0.400	460	0.102				
25	0.290	480	0.100				
30	0.250	500	0.0980				
35	0.230	550	0.0941				
40	0.215	600	0.0907				
45	0.200	650	0.0874				
50	0.196	700	0.0845				
55	0.189	750	0.0822				
60	0.186	800	0.0800				
65	0.183	850	0.0777				
70	0.180	900	0.0754				
75	0.178	950	0.0734				
80	0.176	1000	0.0715				
85	0.174	1200	0.0658				
90	0.172	1400	0.0606				
100	0.167	1600	0.0561				
120	0.160	1800	0.0522				
140	0.154	2000	0.0494				
160	0.149	2200	0.0465				
180	0.143	2400	0.0437				
200	0.138	2600	0.0414				
220	0.134	2800	0.0394				
240	0.130	3000	0.0378				
260	0.126	3200	0.0363				
280	0.123	3400	0.0352				
300	0.121	3600	0.0335				
320	0.118	3800	0.0323				
340	0.115	4000	0.0312				

Physical Constants of Luxium Solutions Plastic Scintillators									
Scintillator	Light Output % Anthracene ¹	Wavelength of Maximum Emission, nm	Decay Constant, ns	Bulk Light Attenuation Length, cm	Refractive Index	H:C Ratio	Loading Element % by weight	Density [g/cc]	Softening Point °C
BC-400	65	423	2.4	250	1.58	1.103		1.023	70
BC-404	68	408	1.8	160	1.58	1.107		1.023	70
BC-408	64	425	2.1	380	1.58	1.104		1.023	70
BC-412	60	434	3.3	400	1.58	1.104		1.023	70
BC-416	38	434	4.0	400	1.58	1.110		1.023	70
BC-418	67	391	1.4	100	1.58	1.100		1.023	70
BC-420	64	391	1.5	110	1.58	1.102		1.023	70
BC-422	55	370	1.6	8	1.58	1.102		1.023	70
BC-422Q	11	370	0.7	<8	1.58	1.102	Benzephenone,0.5%*	1.023	70
BC-428	36	480	12.5	150	1.58	1.103		1.023	70
BC-430	45	580	16.8	NA	1.58	1.108		1.023	70
BC-440	60	434	3.3	400	1.58	1.104		1.023	99
BC-440M	60	434	3.3	380	1.58	1.104		1.023	100
BC-444	41	428	285	180	1.58	1.109		1.023	70
BC-452	48	424	2.1	150	1.58	1.134	Lead,2%	1.050	60
BC-480	**	425	-	400	1.58	1.100		1.023	70
BC-482A	QE=.86	494	12.0	300	1.58	1.110		1.023	70
BC-490	55	425	2.3	NA	1.58	1.107		1.023	70
BC-498	65	423	2.4	NA	1.58	1.103		1.023	70
¹ Anthracene light output = 40-50% of Nal(TI)			* 0.1 to 5 weight % also available		** Ratio of Cerenkov light to scintillator light = 10:1				

The data presented are believed to be correct but are not guaranteed to be so. Nothing herein shall be construed as suggesting the use of our product in violation of any laws, regulations, or rights of third parties. User should evaluate suitability and safety of product for user's application. We cannot assume liability for results that user obtains with our products since conditions of use are not under our control.

Handling, Care and Safety

Premium plastic scintillators are shipped with a protective masking paper, or, on request, with a clear plastic film applied to the scintillator surfaces. This protective layer should be left on the scintillator during all handling until just before it is wrapped with reflective light tight covers prior to installation in your detector system.

These protective materials adhere to the scintillator by means of a low-tack adhesive which leaves little or no residue when the mask is removed. The adhesive is sufficiently weak so that, once it is removed, the masking tape will not stick to the scintillator again.

The scintillators and light guides are machined without the use of standard cutting oils. Water is usually the only lubricant employed. After being polished, the scintillators and light guides are cleaned thoroughly to remove all residues of polishing compounds and optical cements.

- 1. Keep the factory-applied, protective masking material on the scintillator as long as possible. Avoid wetting the protective paper as this may cause the paper to come off and leave the adhesive attached to the scintillator.
- 2. When handling bare scintillator, wear clean soft cotton gloves. If this is not possible, wash your hands to remove any oils. The normal body oils could damage the scintillator.
- 3. Protect the scintillator from exposure to most organic solvents and their vapors. The one exception to this rule is the lower alcohols: methanol, ethanol and isopropanol. Use only reagent grade alcohols. Isopropanol is preferred because of the less intense cooling that accompanies evaporation.
- 4. Clean water and soapy water followed by a clean rinse are the best solvents for cleaning the scintillator, especially when cleaning large areas. A solution of about 10 grams of Alconox in a gallon of water is recommended. After water washing, the scintillator may be blown dry with oil-free compresed air or gently patted dry with clean, soft, non- abrasive cloths or paper towels.

Alcohols are best employed to clean areas such as around epoxy joints.

Scintillating Fiber

Handling

When handling bare scintillator, wear clean soft cotton gloves. If this is not possible, wash your hands to remove any oils. The normal body oils of some people can damage the scintillator.

Cleaning

Clean only with water or Isopropyl alcohol.

Hand Polishing

To polish ends start with #600 grit sandpaper followed by #800 then #1200 and finally plain white printer paper.

Safety -

Reference the Material Safety Data Sheet included with your scintillator shipment for specific instructions.

In general:

- 1. WEAR PROTECTIVE GLOVES
- 2. VENT ROOM
- 3. EXTINGUISH ALL FLAMES

Luxium Solutions operates a Quality Management System for design and manufacturing of chemical compounds, crystals, and detectors, which complies with the requirements of ISO 9001:2015

For additional product literature or information, call customer service at any of our locations or access our website document library – <u>www.luxiumsolutions.com</u>.

Other radiation detection products available from Luxium Solutions include:

Inorganic scintillators including Nal(TI), BGO, CsI, CdWO₄, LaBr₃ and LYSO – configured as solids or arrays with or without an integrated light-sensing device.

It's what's nside that Counts®

Worldwide Luxium Solutions' locations:

- Bangalore, India
- Beijing, China
- Gieres, France
- Hiram, Ohio
- Milford, New Hampshire
- Newbury, Ohio
- St.-Pierre-les Nemours, France
- Tokyo, Japan

www.luxiumsolutions.com

The data presented in this brochure are believed to be correct but are not guaranteed to be so. Nothing herein shall be construed as suggesting the use of our product in violation of any laws, regulations, or rights of third parties. User should evaluate suitability and safety of product for user's application. We cannot assume liability for results that user obtains with our products since conditions of use are not under our control.

Bicron, Polyscin, and "It's what's Inside that Counts" are trademarks of Luxium Solutions ©2023 Luxium Solutions All rights reserved (12-23)