
Plastic Scintillating Fibers

Saint-Gobain Crystals manufactures a variety of plastic scintillating, wavelength-shifting and light-transmitting fibers used for research and industry.

Scintillating fibers are well-suited for such applications as:

- Neutron imaging
- Particle discrimination
- Calorimeters
- Cosmic ray telescopes
- Real-time imaging systems
- Flow cells
- Tracking detectors

We produce a variety of plastic scintillating, wavelength-shifting and light-transmitting fibers. They are available in bulk quantities wound on spools (smaller cross-sections) and as canes (pre-cut straight lengths), or assembled into stacked arrays, bundles, ribbons and complete detectors.

Current sizes range from 0.5 mm to 3 mm round cross-sections. Custom sizes and designs available upon request.

The flexibility of fibers allows them to conform to surface shapes, yielding geometries superior to those of other types of detectors. Examples are detectors for monitoring pipes or barrels.

Below are the properties of our standard fiber formulations.

Fiber	Emission Color	Emission Peak, nm	Decay Time, ns	# of Photons per MeV**	Characteristics / Applications
BCF-10	blue	432	2.7	~8000	General purpose; optimized for diameters >250µm
BCF-12	blue	435	3.2	~8000	Improved transmission for use in long lengths
BCF-20	green	492	2.7	~8000	Fast green scintillator
BCF-60	green	530	7	~7100	3HF formulation for increased hardness
BCF-91A	green	494	12	n/a	Shifts blue to green
BCF-92	green	492	2.7	n/a	Fast blue to green shifter
BCF-98	n/a	n/a	n/a	n/a	Clear waveguide

CRYSTALS

Standard Fibers, Single-clad -

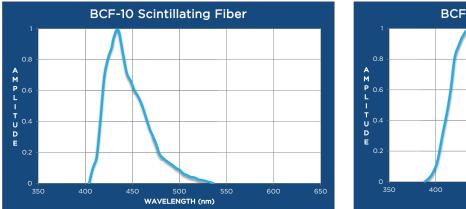
Our standard fibers consist of a polystyrene-based core and a PMMA cladding.

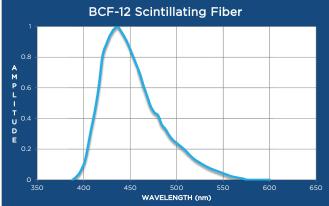
The scintillating core contains a combination of fluorescent dopants selected to produce the desired scintillation, optical and radiation-resistance characteristics. Often, one property is enhanced while another is mildly compromised. In small fibers (\leq 0.5mm), the fluor concentration is increased, usually at the expense of light attenuation length.

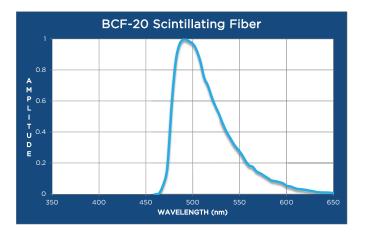
Scintillation efficiency is generally kept near maximum, which for BCF-10, BCF-12 and BCF-20 is 2.4% (nominal). This means that these fibers yield about 8,000 photons per MeV from a minimum ionizing particle. The trapping efficiency, however, permits the collection of less than 4% of the photons for passage down the fiber.

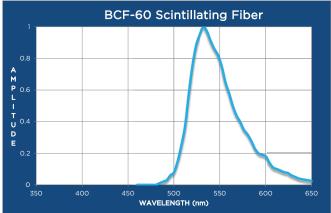
Optical Cladding -

PMMA (polymethylmethacrylate, $C_5H_8O_2$) is the standard cladding material for Saint-Gobain Crystals' fibers. It has a density of 1.2 g/cc and a refractive index of 1.49.

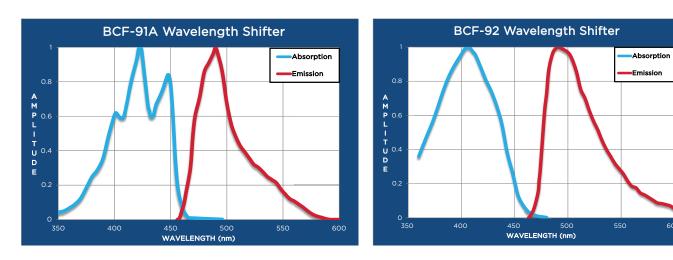

The refractive indexes of the core and cladding and the cross section of the fiber determine the trapping efficiency.

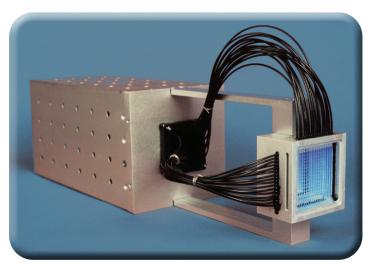

In round fibers, the trapping efficiency also depends on the distance between the fiber axis and the scintillation event. The trapping efficiency of Saint-Gobain Crystals' round fibers ranges from 3.4% for events occurring at the fiber axis to ~7% for events near the core-cladding interface.


Common Properties of Single-clad Fibers -					
Core material	Polystyrene				
Core refractive index	1.60				
Density	1.05				
Cladding material	Acrylic				
Cladding refractive index	1.49				
Trapping efficiency, round fibers	3.44% minimum				
No. of H atoms per cc (core)	4.82 x 10 ²²				
No. of C atoms per cc (core)	4.85 x 10 ²²				
No. of electrons per cc (core)	3.4 x 10 ²³				
Operating temperature	-20°C to +50°C				
Vacuum compatible	Yes				

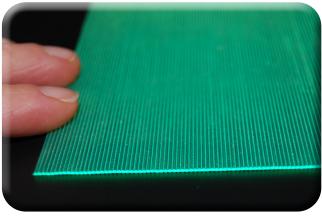


Emission Spectra -

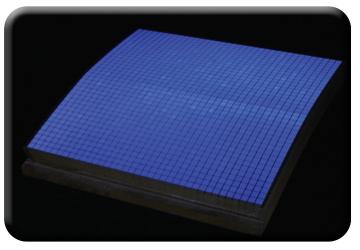




Optical Spectra -



Types of Fiber Assemblies Available -


- Single ribbons as wide as 508mm and as long as 3300mm
- Multi-layered ribbons up to 4 layers thick
- Coherent imagers of round or square fiber
- Ribbons with precision alignment to MA-PMT's
- Crossed fiber arrays
- Flow cells
- Detectors with long, flexible sheathed bundles

Beam profile monitor with orthogonal fiber ribbons

Single fiber ribbon

Focused fiber array

Saint-Gobain Crystals

www.crystals.saint-gobain.com

Manufacturer reserves the right to alter specifications. ©2017-21 Saint-Gobain Ceramics & Plastics, Inc. All rights reserved.