CdWO₄ Cadmium Tungstate Scintillation Material

Cadmium tungstate is a high density, high Z scintillator with relatively high light yield. The emission maximum is at 475 nm, and the total light output is 12 to 15 photons/keV). The light yield relative to NaI(TI) on a bialkali PMT is 30 to 50%.

The intensity of the scintillation emission of CdWO₄ as a function of the temperature is shown in Figure 2 (irradiation with γ -rays). At room temperature (25°C), the curve is relatively flat (-0.1%/°C) which can be important for some applications. For further technical information, see Reference 2.

The intensity of the scintillation emission of CdWO⁴ as a function of wavelength is shown in Figure 1. This distribution is a good match to photodiodes. CT scanners for high and low energies have been built with CdWO⁴. A long decay time of 14000 nanoseconds is not a drawback for CT scanners or other systems that operate with a current mode readout.

Furthermore, CdWO⁴ has a low afterglow. This is important in preventing glare and streaking in the generated images and allows for faster processing.

CdWO⁴ cleaves readily along one plane. This is an asset that is used in manufacturing to produce polished surfaces. Cleaved CdWO⁴ has been fabricated in lengths up to 7 inches.

The high density and stopping power of CdWO⁴ make it an efficient absorber. It takes only 3mm to stop up to 150keV photons. (See table on back.)

Figure 1. Scintillation emission spectrum of CdWO₄

Properties

Density [g/cm ³]	7.9		
Melting point [K]	1598		
Thermal expansion coefficient [C ⁻¹]	10.2x10 ⁻⁶		
Cleavage plane	<010>		
Hardness (Mho)	4 - 4.5		
Hygroscopic	no		
Wavelength of emission max [nm]	475		
Lower wavelength cutoff [nm]	330		
Refractive index @ emission max.	2.2 - 2.3		
Primary decay time [ns]	14000		
Light yield [photons/keVγ]	12 - 15		
Photoelectron yield [% of Nal(Tl)] (for γ-rays)	30 - 50		

CRYSTALS

CdWO₄ Cadmium Tungstate Scintillation Material

Figure 2 shows the light output of CdWO⁴ as a function of temperature. The curve is relatively flat (-0.1%/°C) near room temperature. This is an important benefit for many applications. (For further information, see Reference 2.)

CdWO⁴ shows a very good radiation resistance: for doses of 10⁴ Gray (10⁶ rad) γ -rays, the optical transmission of the crystal decreases less than 15%. For β -particles, this effect is even smaller: less than 6% for 10⁵ Gray (10⁷ rad).

CdWO⁴ has very little ²²⁸Th and ²²⁶Ra contamination and is suitable for low activity counting applications. (See Reference 1.)

2.36

Figure 2. Temperature dependence of the scintillation light output of CdWO₄

Figure 3. Refractive index at emission maximum

Material	K-edge	40keV	60keV	80keV	100keV	300keV	600keV
	keV	mm	mm	mm	mm	mm	mm
Nal	33.2	0.43	1.3	2.7	4.9	49.2	99.2
Csl	33.2	0.29	0.8	1.8	3.3	36.5	79.3
CdWO₄	69.5	0.33	0.9	0.5	0.9	12.6	35.9
BGO	90.5	0.38	1.1	2.2	1.1	13.3	37.8
LSO	63.3	0.55	1.6	0.7	1.3	16.0	40.9
LYSO	63.3	0.58	1.65	0.8	1.4	17.3	43.2

This table shows the thickness of material, in mm. required to absorb 95% of the noted X-ray energies

Saint-Gobain Crystals

www.crystals.saint-gobain.com

References:

- 1. Nuclear Instruments and Methods, A369(1996) 164-168.
- 2. IEEE NS, Volume 41, No. 4, August 1994.